

Software Engineering

Company Policy

RD Research

Author Max Durrant

Updated May 2023

RD Research Software Engineering - Company Policy

2

Contents

1 Introduction & Capabilities 4

2 Software and Services Utilized 4

3 AWS Practices and Guidelines 5

4 Forge Practices and Guidelines 6

5 Laravel Practices and Guidelines 6

6 Frontend Languages Practices and Guidelines 7

7 Local Development Practices and Guidelines 8

8 Version Control Practices and Guidelines 9

9 Code Structures Practices and Guidelines 10

10 Continuous Integration/Continuous Deployment (CI/CD) 10

11 Coding Standards and Styles 11
11.1 PHP 8 Coding Standards and Styles ... 11

11.1.1 General Guidelines .. 11
11.1.2 Indentation and Whitespace ... 11
11.1.3 Naming Conventions .. 12

11.2 Control Structures ... 12
11.2.1 Function and Method Calls .. 12
11.2.2 PHPDoc ... 12

11.3 JavaScript Coding Standards and Styles .. 12
11.3.1 General Guidelines ... 12
11.3.2 Indentation and Whitespace .. 13
11.3.3 Naming Conventions .. 13
11.3.4 Control Structures .. 13
11.3.5 Function and Method Calls .. 13
11.3.6 JSDoc ... 13

11.4 TypeScript Coding Standards and Styles ... 13
11.4.1 General Guidelines ... 13
11.4.2 Indentation and Whitespace .. 14
11.4.3 Naming Conventions .. 14
11.4.4 Control Structures .. 14
11.4.5 Function and Method Calls .. 14
11.4.6 TSDoc ... 14

11.5 Python (PEP-8) Coding Standards and Styles .. 14
11.5.1 General Guidelines ... 14
11.5.2 Indentation and Whitespace .. 15
11.5.3 Naming Conventions .. 15
11.5.4 Imports .. 15
11.5.5 Comments and Docstrings ... 15

RD Research Software Engineering - Company Policy

3

12 Code Review Practices 16

13 Database Management and Migrations 16
13.1 General Guidelines .. 16
13.2 MySQL Workbench .. 17
13.3 Database Migrations ... 17
13.4 Within Laravel... 17

13.4.1 General Guidelines ... 17
13.4.2 Migration Practices... 18
13.4.3 Seeding .. 18

14 Secure Coding Practices 18
14.1 Secure Communication .. 19
14.2 Cross-Origin Resource Sharing (CORS) .. 19
14.3 Environment Configuration Management ... 19

15 Documentation Practices 20
15.1 Code Documentation .. 20
15.2 Written Documentation ... 20

16 DevOps Practices 21

17 Agile/Scrum Practices 21
17.1 General Overview .. 21
17.2 Scrum ... 21
17.3 Integration with JIRA ... 22

18 Recommended Practices/Guidelines for a Software Engineering Com-
pany 22

19 Conclusion 23

RD Research Software Engineering - Company Policy

4

1 Introduction & Capabilities

RD Research is a small but highly professional bespoke software development company
based in Norwich. We specialise in providing customised database, CRM, and ERP
development solutions tailored to the specific needs of our clients. Our expertise lies in
managing multiple data sources, including various databases, spreadsheets, and other
third-party data sources into a single, centralised database and CRM.

We have a proven track record of delivering projects on time and within budget,
consistently meeting and exceeding our clients' expectations. This reputation for
reliability and excellence extends to our work with the NHS, Banks, insurance
companies and major on-line retailers including Amazon, where we have developed
systems to streamline their processes.

Our solutions are designed to meet unique requirements, yet are competitively priced. At
RD Research, we pride ourselves on understanding our clients' needs and delivering
exemplary bespoke software solutions that drive business growth and success. Our
commitment to delivering on time and on budget, coupled with our ability to create
tailored solutions, has solidified our reputation as a trusted partner in software
development and data management.

The purpose of this document is to ensure a consistent, secure, and high-quality
approach to our software development lifecycle, from code creation, review, and version
control, to agile methodologies and DevOps practices. We cover best practices for our
primary programming languages and frameworks, as well as essential services such as
Amazon Web Services (AWS) and Laravel Forge.

The document serves as a single source of truth for our software development operations
and is to be updated regularly. It ensures that all team members are on the same page,
contributing to our shared mission with clarity and confidence.

By consistently following these guidelines, we are not only ensuring the smooth and
efficient functioning of our operations but also enhancing the quality of our products,
benefiting our clients and business in the long run.

2 Software and Services Utilized

At RD Research, we use a diverse range of software and services to facilitate our software
development and business operations. This section outlines the primary tools we use:

• Code Development: We use IDEs and text editors like Visual Studio Code, Php-
Storm, and WebStorm. For frontend development, we use libraries and frameworks
such as React, Vue.js, most commonly this would be NuxtJS.

• Version Control: We use Git for version control, with repositories hosted on
GitHub. We also maintain a local repository on our TrueNAS system.

RD Research Software Engineering - Company Policy

5

• Project Management: We manage our projects and track issues using JIRA.

• Continuous Integration/Continuous Deployment (CI/CD): Our CI/CD
pipeline is facilitated through Jenkins, and we use Docker for containerization.

• Database Management: We use MySQL Workbench for managing and designing
our databases.

• Server Management: Our servers are managed through Laravel Forge, and we
use AWS services such as EC2 for server hosting.

• Backup and Storage: We utilize AWS S3 for backups and AWS EFS for large
file storage.

• DNS Management: We manage our Domain Name System (DNS) configurations
using Cloudflare. Our domains are registered through registrars like 123-reg and
Directnic.

• Email: Our email services are managed through MXRoute.

• Collaboration and Communication: For team communication and collabora-
tion, we use Microsoft Teams.

• Documentation: Our technical documentation is created and maintained using
platforms Overleaf and Confluence.

• Security: We use various tools and services to ensure our software’s security,
including SSL certificates, firewall configurations, and security auditing tools.

These tools form the backbone of our software development and operational processes,
enabling us to work efficiently and deliver high-quality products.

3 AWS Practices and Guidelines

At RD Research, we leverage AWS (Amazon Web Services) for our hosting and storage
needs. We utilize various AWS services like EC2, RDS, S3, and EFS. Here are some
guidelines for working with these AWS services:

• EC2 (Elastic Compute Cloud): EC2 instances should be chosen based on the
requirements of the application. Ensure that instances are properly secured with
appropriate security group rules. Regularly monitor the CPU, Memory, and Disk
usage of your instances and adjust the instance type as necessary.

• RDS (Relational Database Service): Use RDS for managed database services.
Regularly back up your databases and monitor the database performance. Enable
Multi-AZ deployment for high availability and read replicas to offload read traffic.

• S3 (Simple Storage Service): S3 is used for backups and storing static files.
Enable versioning to keep track of and retrieve all versions of an object. Use lifecycle
policies to automatically move older backups to cheaper storage classes and delete
them after a certain period.

• EFS (Elastic File System): Use EFS for storing large files that need to be
accessed across multiple EC2 instances. Always enable lifecycle management on
EFS to move infrequently accessed files to a cost-effective storage class.

RD Research Software Engineering - Company Policy

6

• Security: Ensure that all AWS resources are secured using AWS Identity and
Access Management (IAM). Regularly review and update the security policies.

• Cost Optimization: Regularly review the usage and costs associated with your
AWS resources. Consider reserved instances for EC2 and RDS if you have pre-
dictable usage to save on costs. Utilize cost-saving storage classes in S3 and EFS.

• Monitoring and Alerts: Use CloudWatch to monitor your AWS resources and
set up alerts for any unusual activity or thresholds.

By following these guidelines, we ensure that our AWS resources are managed effec-
tively, securely, and cost-efficiently Amazon Web Services, 2023.

RD Research Software Engineering - Company Policy

7

4 Forge Practices and Guidelines

At RD Research, we use Laravel Forge for server management and automated deploy-
ments. Forge connects to your repositories and deploys your applications with ease,
while also simplifying many common server management tasks. Here are our practices
and guidelines for using Forge:

• Server Setup: Use Forge to set up your servers. Forge supports multiple providers
including DigitalOcean, AWS, and Linode, and it automatically installs necessary
software such as Nginx, PHP, MySQL, and more.

• Automated Deployments: Link your GitHub repositories with Forge to enable
automatic deployments whenever you push to a designated branch. This ensures
your applications are always running the latest code.

• Environment Management: Use Forge’s .env file management to configure envi-
ronment variables for your applications. This ensures sensitive information is kept
out of your codebase.

• Monitoring and Alerts: Use Forge to set up monitoring services and alerts for
your servers and applications. This helps to quickly detect and respond to any
issues that arise.

• Security: Forge automatically configures firewall settings and updates server soft-
ware packages regularly to keep your server secure. Always review and follow the
security best practices provided by Forge.

• Backups: Configure regular backups for your databases using Forge to prevent
data loss.

• SSH Key and Sudo User: Use Forge to manage SSH keys and sudo users on your
server. This provides a secure and efficient way to manage access to your server.

By adhering to these guidelines, we can manage and deploy our applications effectively

and securely with Laravel Forge Laravel, 2023.

5 Laravel Practices and Guidelines

At RD Research, we use Laravel as one of our primary backend frameworks due to its
elegant syntax, feature-rich ecosystem, and robust performance. Here are some guidelines
for working with Laravel:

• Adhere to Laravel’s Directory Structure: Laravel’s directory structure is well
organized and adheres to PHP’s PSR-4 autoloading standard. Always follow this
structure to keep the application maintainable and scalable.

• Use Eloquent ORM: Make full use of Eloquent ORM for database operations.
Eloquent provides a simple and readable way to perform database operations and
ensures that the application is secure from SQL injection attacks.

RD Research Software Engineering - Company Policy

8

• Leverage Laravel’s Artisan Commands: Laravel comes with a command-line
tool called Artisan, which provides a number of helpful commands for common
tasks. This includes creating controllers, models, migrations, and running tests.

• Utilize Laravel’s Middleware: Use middleware to filter HTTP requests entering
your application. Middleware provides a convenient mechanism for inspecting and
filtering HTTP requests entering your application.

• Take Advantage of Dependency Injection: Laravel’s service container is a
powerful tool for managing class dependencies and performing dependency injec-
tion. It helps to keep the code flexible, maintainable, and testable.

• Follow MVC Pattern: Laravel is an MVC framework, so ensure that code is
correctly organized into Models, Views, and Controllers. This pattern ensures the
separation of concerns where each component of the application has a specific role.

• Database Migrations: Use Laravel’s migration feature to version control your
database. This approach ensures consistency across different environments.

• Validation: Use Laravel’s built-in validation features to validate data before it
reaches the controller. This can help to protect your application from invalid data
and security vulnerabilities.

• Use Laravel’s Built-in Testing Tools: Laravel provides a suite of testing tools
to help ensure that new changes don’t break existing functionality. Writing tests
can help to catch bugs early in the development process.

By following these guidelines, we ensure that our Laravel applications remain robust,

maintainable, and efficient Community, 2022.

6 Frontend Languages Practices and Guidelines

At RD Research, our primary frontend languages are JavaScript and TypeScript, which
we use in combination with modern frameworks and libraries for creating intuitive and
responsive user interfaces. Here are our practices and guidelines for using these languages:

• Framework and Library Usage: Make efficient use of the capabilities provided
by the frontend framework or library in use (like React, Vue, or Angular). Under-
stand their core concepts, follow their best practices, and utilize their established
patterns for consistency and maintainability.

• Component-Based Development: Develop reusable components to improve
code maintainability and consistency across the user interface. This approach fa-
cilitates testing and helps to keep the codebase DRY (Don’t Repeat Yourself).

• Asynchronous Programming: JavaScript and TypeScript are inherently asyn-
chronous, and understanding how to work with Promises, async/await, and call-
backs is crucial. Always handle asynchronous operations properly to avoid unhan-
dled promise rejections and callback hell.

RD Research Software Engineering - Company Policy

9

• State Management: Depending on the complexity of your application, consider
using a state management solution like Redux or Vuex. This can help you manage
shared states more predictably and effectively across your components.

• Accessibility: Build interfaces that are accessible to all users, including those with
disabilities. Follow the Web Content Accessibility Guidelines (WCAG) to ensure
your web pages are accessible.

• Performance Optimization: Pay attention to frontend performance. Minimize
the use of blocking operations, optimize render performance, and consider tech-
niques like lazy loading to improve user experience.

• Cross-Browser Compatibility: Ensure that your code works consistently across
different browsers. Use feature detection, polyfills, and transpilation (with tools
like Babel) where necessary.

• Error Handling: Always implement robust error handling. This can include
input validation, try/catch blocks for runtime errors, and proper handling of failed
network requests.

By following these practices, we can create high-quality, robust, and user-friendly

frontend applications Lindley, 2020.

7 Local Development Practices and Guidelines

Local development involves writing and testing code on individual developers’ machines
before committing changes to the version control system. At RD Research, we encourage
practices that enhance productivity, ensure code quality, and maintain consistency across
different local environments.

Here are our guidelines for local development:

• Setup a Consistent Development Environment: All developers should main-
tain a local development environment that closely mirrors our production environ-
ment. This includes using the same versions of languages, libraries, and databases.
Docker is recommended for managing and isolating the development environment.

• Use of Integrated Development Environment (IDE): Choose an IDE that
best suits your needs and the technology stack of the project. Configure it to match
our coding standards and styles.

• Testing: Write unit tests and integration tests for your code. Run these tests
locally to catch and fix errors before pushing your changes. This improves the
quality of your contributions and reduces the time spent on fixing bugs later.

• Performance: Monitor the performance of your code locally. Use profiling tools
to identify potential bottlenecks and optimize your code where necessary.

• Security: Implement secure coding practices from the start of local development.
Regularly check your code for security vulnerabilities.

RD Research Software Engineering - Company Policy

10

• Version Control: Regularly commit your changes to a separate branch in the
version control system. This ensures your work is saved and allows you to track
your progress.

• Collaboration: Keep your team members informed about what you are working
on and any challenges you encounter. Seek feedback early and often.

These practices help to ensure high-quality, efficient local development that aligns

with the team’s overall goals and workflows Various, n.d.

8 Version Control Practices and Guidelines

Version control is crucial in managing changes to our codebase, tracking the history of
modifications, and enabling collaboration among team members. At RD Research, we
use GitHub for our production repository and a local repository on the TrueNAS system.

Our guidelines for version control practices are as follows:

• Branching Strategy: Every feature, bugfix, or task should be developed in a
dedicated branch, created from the main branch. This prevents the main branch
from having unstable code and enables isolated testing for each task.

• Commit Often: Commit your changes often. This creates a more granular history
of the code, which can be useful for tracking changes and identifying the cause of
bugs.

• Informative Commit Messages: Write clear, informative commit messages that
explain what changes were made and why. Each commit message should include
the corresponding JIRA issue code for traceability.

• Pull Requests: When a task is completed, create a pull request. This allows team
members to review the changes before they are merged into the main branch.

• Code Reviews: Before a branch can be merged into the main branch, it must be
reviewed and approved by at least one other team member.

• Merge Carefully: When merging branches, ensure you’re not overriding or con-
flicting with changes made by others. Resolve any merge conflicts carefully to
prevent bugs.

• Sync Frequently: Regularly sync your local repository with the remote reposito-
ries to stay updated with the latest changes made by others.

• Backup: All code is backed up on our local TrueNAS system to prevent data loss
in case of any issues with the remote repository.

Following these practices helps us maintain an organized, traceable version history

and facilitates effective collaboration GitHub, n.d.-b.

RD Research Software Engineering - Company Policy

11

9 Code Structures Practices and Guidelines

In RD Research, we understand that well-structured code is vital for software mainte-
nance, scalability, and collaboration. Our code structure practices and guidelines aim to
ensure our codebase is logically organized and easy to understand.

• Modularity: Code should be separated into independent modules or components.
Each module should have a single responsibility and encapsulate the related func-
tionality. This makes the code easier to understand, test, and reuse.

• Consistent Directory Structure: The project’s directory structure should be
consistent and intuitive. Similar files (like models, controllers, or tests) should be
grouped in dedicated directories. This helps team members to quickly locate and
understand the context of a particular code file.

• Use of Design Patterns: Use appropriate design patterns where they make sense.
Design patterns provide proven solutions to common software design problems and
can make the code more flexible and easier to maintain.

• Separation of Concerns: Different aspects of the application, such as business
logic, data access, and user interface, should be separated. This improves the
maintainability and scalability of the software.

• Commenting and Documentation: Code should be as self-explanatory as possi-
ble. Use comments to explain why certain decisions were made or describe complex
parts of the code where needed. Always document the purpose and usage of each
module, class, method, and function.

• Refactoring: Regularly refactor the code to improve its structure and readability.
Remove duplicate code, simplify complex parts, and ensure the code aligns with
the current best practices.

These practices align with the general recommendations on code structures and soft-

ware architecture McConnell, 2004.

10 Continuous Integration/Continuous Deployment

(CI/CD)

At RD Research, we use GitHub, Docker, Jenkins, and our sandbox server in our CI/CD
pipeline. Here’s how we use these tools:

• GitHub: We use GitHub for version control and code hosting. All code changes
are stored in branches and merged into the main production branch after being
reviewed and tested GitHub, n.d.-a.

• Docker: Docker allows us to package our applications along with their dependen-
cies into a container. This makes our applications portable and ensures they run
consistently across different environments Docker, n.d.

RD Research Software Engineering - Company Policy

12

• Jenkins: Jenkins is our CI/CD automation server. It’s responsible for pulling the
latest code from GitHub, building Docker containers, running tests, and deploying
the code to our sandbox or production server if all tests pass Jenkins, n.d.

• Sandbox Server: Before deploying to production, new features and updates are
first deployed to our sandbox server. This allows us to test our changes in a
production-like environment without impacting our live users.

Our typical workflow is as follows:
1. Developers commit their code changes to a new branch on GitHub and create a

pull request. 2. Once the pull request is created, Jenkins automatically builds a Docker
container with the new changes and runs all automated tests. 3. If the tests pass, Jenkins
deploys the new container to the sandbox server for further testing. 4. If the sandbox
testing is successful and the pull request is approved, Jenkins deploys the new container
to the production server. 5. The team monitors the application for any issues following
the deployment.

11 Coding Standards and Styles

11.1 PHP 8 Coding Standards and Styles

11.1.1 General Guidelines

• Follow the PSR-1 and PSR-2 guidelines developed by the PHP Framework Interop-
erability Group “PSR-12: Extended Coding Style”, n.d. These standards provide
guidelines for basic coding standards and coding style guide respectively.

• Use UTF-8 encoding.

• Use Unix-style line endings (LF).

• End all PHP files with a single blank line.

• Make use of PHP’s built-in linter (‘php -l‘) before committing code to catch any
syntax errors.

11.1.2 Indentation and Whitespace

• Use 4 spaces for indentation. Do not use tabs.

• Avoid trailing whitespace at the end of lines.

• Use a single blank line to separate logical blocks of code.

• Insert a space after control flow keywords like ‘if‘, ‘while‘, ‘for‘, etc. Insert a space
before and after the opening parenthesis and before the opening curly brace.

• Do not insert spaces after opening and before closing parentheses in function calls.

RD Research Software Engineering - Company Policy

13

11.1.3 Naming Conventions

• Use camelCase for variables and methods. Use PascalCase for class names. Avoid
using underscores as prefixes or suffixes.

• Choose descriptive and meaningful names. Variable and function names should
clearly represent their purpose.

• Use uppercase letters for constants defined with the ‘define‘ function or the ‘const‘
keyword.

11.2 Control Structures

• Always use curly braces to delimit control structures, even if they only contain one
line.

• Control structure keywords must have one space after them, followed by a space-
separated condition.

11.2.1 Function and Method Calls

• Do not put spaces between the function or method name and the opening paren-
thesis, nor between the closing parenthesis and the semicolon.

• Put a space after each comma in the argument list.

11.2.2 PHPDoc

• All PHP files should start with a file-level docblock that contains a brief description
of the contents and licensing information.

• Classes and methods should have a docblock that explains their purpose, inputs,
outputs, and exceptions.

Remember, these are general guidelines and there may be some exceptions based on

your specific use case or team preferences. It’s important to maintain consistency across
your codebase, so ensure that everyone on your team understands and follows these
conventions.

11.3 JavaScript Coding Standards and Styles

11.3.1 General Guidelines

• Follow the Airbnb JavaScript Style Guide “JavaScript Style Guide”, n.d. This guide
is a widely accepted industry standard.

• Use UTF-8 encoding.

• Use Unix-style line endings (LF).

• End all JavaScript files with a single blank line.

RD Research Software Engineering - Company Policy

14

11.3.2 Indentation and Whitespace

• Use 2 spaces for indentation. Do not use tabs.

• Avoid trailing whitespace at the end of lines.

• Use a single blank line to separate logical blocks of code.

• Add a space before the opening curly brace in blocks and functions.

11.3.3 Naming Conventions

• Use camelCase for variables and functions. Use PascalCase for class names. Avoid
using underscores as prefixes or suffixes.

• Choose descriptive and meaningful names. Variable and function names should
clearly represent their purpose.

• Constants should be in uppercase with underscores separating words.

11.3.4 Control Structures

• Always use curly braces to delimit control structures, even if they only contain one
line.

• Control structure keywords must have one space after them, followed by a space-
separated condition.

11.3.5 Function and Method Calls

• Do not put spaces between the function or method name and the opening paren-
thesis, nor between the closing parenthesis and the semicolon.

• Put a space after each comma in the argument list.

11.3.6 JSDoc

• All JavaScript files should start with a file-level docblock that contains a brief
description of the contents and licensing information.

• Classes and methods should have a docblock that explains their purpose, inputs,
outputs, and exceptions.

11.4 TypeScript Coding Standards and Styles

11.4.1 General Guidelines

• Follow the TypeScript Coding Guidelines provided by Microsoft.

• Use UTF-8 encoding.

• Use Unix-style line endings (LF).

• End all TypeScript files with a single blank line.

RD Research Software Engineering - Company Policy

15

11.4.2 Indentation and Whitespace

• Use 2 spaces for indentation. Do not use tabs.

• Avoid trailing whitespace at the end of lines.

• Use a single blank line to separate logical blocks of code.

• Add a space before the opening curly brace in blocks and functions.

11.4.3 Naming Conventions

• Use camelCase for variables and functions. Use PascalCase for class names and
interfaces. Avoid using underscores as prefixes or suffixes.

• Choose descriptive and meaningful names. Variable and function names should
clearly represent their purpose.

• Constants should be in uppercase with underscores separating words.

11.4.4 Control Structures

• Always use curly braces to delimit control structures, even if they only contain one
line.

• Control structure keywords must have one space after them, followed by a space-
separated condition.

11.4.5 Function and Method Calls

• Do not put spaces between the function or method name and the opening paren-
thesis, nor between the closing parenthesis and the semicolon.

• Put a space after each comma in the argument list.

11.4.6 TSDoc

• All TypeScript files should start with a file-level docblock that contains a brief
description of the contents and licensing information.

• Classes and methods should have a docblock that explains their purpose, inputs,
outputs, and exceptions.

11.5 Python (PEP-8) Coding Standards and Styles

11.5.1 General Guidelines

• Follow the PEP-8 style guide for Python “PEP 8 – Style Guide for Python Code”,
n.d. This is the official style guide for Python and is widely used in the Python
community.

• Use UTF-8 encoding.

• Use Unix-style line endings (LF).

RD Research Software Engineering - Company Policy

16

• Python files should end with a single newline character.

11.5.2 Indentation and Whitespace

• Use 4 spaces for indentation. Do not use tabs.

• Line length should not exceed 79 characters.

• Use spaces around operators and after commas, but not directly inside bracketing
constructs: ‘a = f(1, 2) + g(3, 4)‘.

• Avoid trailing whitespace at the end of lines.

• Use a single blank line to separate functions, classes, and larger blocks of related
functions.

• Use two blank lines to separate top-level functions and classes.

11.5.3 Naming Conventions

• Use snake case for variables and functions. Use PascalCase for class names.

• Use ALL CAPS for constants.

• Use self as the first method argument, for instance, methods and cls as the first
method argument for class methods.

11.5.4 Imports

• Always put imports at the top of the file.

• Imports should be grouped in the following order: standard library imports, related
third-party imports, and local application/library-specific imports.

• Each import should be on a separate line.

• Avoid wildcard imports (‘from mod import *‘).

11.5.5 Comments and Docstrings

• Use inline comments sparingly.

• Write comments in complete sentences.

• Use docstrings for all public modules, functions, classes, and methods.

• Docstrings should follow the conventions outlined in PEP-257.

Remember, a style guide aims to achieve greater readability and consistency in your
code. While following this guide as closely as possible is good practice, don’t hesitate to
make exceptions if it improves readability and understandability.

RD Research Software Engineering - Company Policy

17

12 Code Review Practices

Code review is an integral part of the software development process at RD Research. It
provides a means to maintain the quality of the codebase, share knowledge among team
members, and prevent bugs from reaching the production environment. Here are the
practices we follow:

• Review Requirement: All code must be reviewed and approved by at least one
other person before it can be merged into the production branch. This applies to
everyone, regardless of position within the company.

• Pull Requests: Code reviews are conducted via pull requests. When a developer
has completed a task, they should open a pull request against the target branch.

• Descriptive Messages: Each pull request should have a descriptive title and
a comprehensive description. The description should explain the purpose of the
changes, how they were implemented, and any potential impact on the existing
codebase.

• Timely Reviews: Team members are expected to review pull requests assigned
to them promptly. This ensures a smooth and fast development process.

• Constructive Feedback: Code reviews should be constructive. Reviewers should
provide clear, concise, and respectful feedback.

• Actionable Comments: Feedback should be actionable. Comments such as ”This
needs to be fixed” should be avoided in favour of more specific instructions, like
”Consider refactoring this function to improve readability.”

• Reviewer Approval: If the reviewer approves the changes, they can authorize
merging the pull request. If they request changes, the original developer should
make the requested adjustments and then request another review.

• Continuous Integration: Use a CI system to automatically build and test the
code when a pull request is opened. This helps to catch any integration errors or
failing tests early.

These practices align with the recommendations given in Software, n.d.

13 Database Management and Migrations

13.1 General Guidelines

Proper database management is essential for maintaining data integrity and optimizing
system performance. Here are some general best practices for managing databases in our
environment:

• Schema Design: Carefully design your schema before implementing it. Consider
the relationships between different data entities and normalize your data to elimi-
nate redundancy.

RD Research Software Engineering - Company Policy

18

• Indexing: Use indexes wisely to improve query performance. However, avoid over-
indexing as it can slow down insert and update operations.

• Backups: Regularly back up your database to prevent data loss in case of system
failures. Test your backups periodically to ensure they can be restored successfully.

13.2 MySQL Workbench

We use MySQL Workbench “MySQL Workbench Manual”, n.d. as our standard database
design and management tool. This versatile tool supports data modelling, SQL develop-
ment, and comprehensive administration tools for server configuration, user administra-
tion, and much more.

• Modeling: Use MySQL Workbench for designing and modifying database schemas.
It provides an intuitive graphical interface for designing database structures.

• Development: Use its powerful SQL editor for creating and executing SQL scripts.
Its debugging tools help you debug and optimize your SQL code.

• Administration: Use MySQL Workbench for server configuration and adminis-
tration. Its user management tools let you manage database access permissions.

13.3 Database Migrations

Database migrations are crucial for maintaining and updating the database schema. They
enable version control for databases and make it possible to move databases across dif-
ferent systems.

• Version Control: Just like source code, database schema changes should be
tracked using version control. Each change to the database schema should cor-
respond to a specific migration script.

• Automated Migrations: Use automated migration tools where possible to re-
duce the risk of errors. Automated migration tools can generate migration scripts
automatically when you modify the database schema using a GUI.

• Testing: Always test your migrations on a staging environment before applying
them to the production database. This will help you catch and fix any potential
issues before they affect your production environment.

13.4 Within Laravel

13.4.1 General Guidelines

Laravel “Laravel Documentation”, n.d. provides a powerful suite of tools for database
management. Here are some key practices to follow:

• Eloquent ORM: Laravel’s Eloquent ORM provides a simple and fluent interface
for querying and manipulating database records. It also allows for a more readable
and maintainable codebase. Use it whenever possible.

RD Research Software Engineering - Company Policy

19

• Validation: Always validate user data before it reaches your database. Laravel
provides several ways to do this including form request validation, manual valida-
tion, and route model binding.

• Security: Be aware of potential SQL injection attacks. Laravel’s query builder
uses PDO parameter binding which protects your application from SQL injection
attacks.

13.4.2 Migration Practices

In Laravel, migrations are like version control for your database, allowing a team to
modify the database schema and stay up to date on the current schema state. Here are
some recommended migration practices:

• Generating Migrations: Use the Artisan CLI provided by Laravel to generate
migrations. The command ‘php artisan make:migration create users table‘ will cre-
ate a new migration file for a ”users” table.

• Running Migrations: Use the command ‘php artisan migrate‘ to run outstand-
ing migrations. Always check for any database errors that may occur during this
process.

• Rolling Back Migrations: If you need to undo a migration, you can use the ‘php
artisan migrate:rollback‘ command. However, be aware that this should be used
carefully, especially in a production environment, as it can lead to data loss.

• Adding Columns: When adding columns to an existing table, create a new migra-
tion with the ‘php artisan make:migration‘ command instead of editing an existing
migration.

13.4.3 Seeding

Database seeding is a convenient way to populate your database with test data using
seed classes. Seeding can be performed with the ‘php artisan db:seed‘ command.

• Generating Seeders: Use the Artisan command ‘php artisan make:seeder User-
sTableSeeder‘ to generate a seeder for the ”users” table.

• Running Seeders: After writing your seeder, use the ‘php artisan db:seed‘ com-
mand to run your seeders. You can also use the ‘–class‘ option to specify a specific
seeder class to run individually.

14 Secure Coding Practices

Secure coding is a set of techniques designed to prevent security vulnerabilities in code.
Following these practices helps to protect a system against threats such as unauthorized
access, data breaches, and cyber attacks.

• Input Validation: Always validate user input to prevent injection attacks. User
input should never be trusted implicitly.

RD Research Software Engineering - Company Policy

20

• Error Handling: Avoid revealing sensitive information in error messages. Use
exception handling to catch and manage errors effectively.

• Password Security: Store passwords securely, ideally hashed with a salt value.

• Secure Dependencies: Regularly update and review the libraries and dependen-
cies you use in your software to prevent security vulnerabilities.

• Principle of Least Privilege: Each part of the system should operate with the
least amount of privilege necessary to complete its function.

14.1 Secure Communication

Secure communication is critical for protecting data in transit.

• SSL/TLS: Use Secure Socket Layer (SSL) or Transport Layer Security (TLS)
to encrypt the communication between the client and the server. This prevents
potential attackers from reading or modifying the data in transit. “Let’s Encrypt”,
n.d.

• HTTPS: Always use HTTPS (HTTP over SSL/TLS) instead of HTTP for all web
communications. This ensures the confidentiality and integrity of data between the
client and server.

14.2 Cross-Origin Resource Sharing (CORS)

CORS is a security feature that can restrict how and when a document can request
resources from a different origin.

• CORS Policy: A server defines its CORS policy in the HTTP response headers
it sends back to the client. This policy specifies who (i.e., which origins) can access
its resources. Contributors, n.d.

• CORS Implementation: When implementing CORS, ensure that your policy is
as strict as possible, and only allows trusted web origins to request your server’s
resources.

14.3 Environment Configuration Management

• Environment Variables: Keep all sensitive information like API keys, database
credentials, and so forth in environment variables, not hard-coded in your applica-
tion Wiggins, n.d.

• Isolated Environments: Keep development, staging, and production environ-
ments isolated from each other. Never mix data or configuration between them.

• Version Control: Environment configuration should be under version control, but
without any sensitive information.

• Automatic Configuration: Automate the environment configuration process to
avoid manual errors and to make it easy to recreate the environment when needed.

RD Research Software Engineering - Company Policy

21

15 Documentation Practices

Documentation is a crucial part of software engineering. It helps the development team
understand and maintain the codebase, and allows users to understand how to use the
software. This section outlines best practices for code and written documentation Over-
flow, n.d.

15.1 Code Documentation

• Code Comments: Use comments to explain the purpose of complex code blocks,
especially algorithms and business logic. Comments should be concise and directly
related to the code beneath them.

• Function/Method Comments: All functions/methods should have a comment
explaining what they do, what their inputs are, what they return, and any side
effects they may have.

• Class Comments: Each class should have a comment at the top describing its
purpose and how it interacts with other classes.

• Variable Naming: Use descriptive variable names to make the code self-explanatory.
This is often better than a comment for understanding what a particular piece of
code does.

• Consistency: Keep the style of your comments consistent throughout the code-
base. This helps other developers read and understand your comments more quickly.

15.2 Written Documentation

• User Manuals: Create comprehensive user manuals for your software. These
should include step-by-step instructions for using each feature of your software, as
well as troubleshooting guides for common issues.

• Developer Guides: Write detailed developer guides. These should include in-
structions on setting up the development environment, explanations of the code
structure and key algorithms, and guidelines for contributing to the project.

• API Documentation: If your software has an API, provide thorough documen-
tation. This should include descriptions of each endpoint, the request/response
formats, and example requests/responses.

• Updates: Keep your documentation updated. Whenever you make changes to
your software, make sure to update the relevant documentation as well.

• Accessibility: Ensure your documentation is accessible and easy to navigate. Use
clear headings, include a table of contents, and use plain language as much as
possible.

RD Research Software Engineering - Company Policy

22

16 DevOps Practices

DevOps combines software development (Dev) and IT operations (Ops) to shorten the
system development lifecycle and deliver high-quality software continuously. At RD Re-
search, we adhere to the following key practices in our DevOps culture:

• Continuous Integration/Continuous Deployment (CI/CD): We use CI/CD
pipelines to automate the testing and deployment of our software. This allows us
to detect issues earlier, deliver updates faster, and reduce the risk of deployment
failures Fowler and Foemmel, n.d.

• Infrastructure as Code (IaC): We manage and provision our computing re-
sources programmatically and version control these scripts. This reduces human
error and enables consistent and reproducible environments “What is Infrastruc-
ture as Code (IaC)?”, n.d.

• Monitoring and Logging: We continuously monitor our applications and systems
to detect anomalies and performance issues. Logging helps us in troubleshooting
and understanding system behavior.

• Incident Response: We have procedures in place to manage and respond to
system incidents efficiently, minimizing downtime and impact on users.

• Collaboration and Communication: Effective communication and close col-
laboration between development and operations teams are central to our DevOps
culture. This ensures that everyone has a comprehensive view of the system from
end to end.

• Security: We incorporate security practices into every step of the development
process. This includes conducting security reviews, using secure coding practices,
and regularly updating and patching our systems.

17 Agile/Scrum Practices

17.1 General Overview

We at RD Research follow Agile development principles to promote sustainable develop-
ment. Our Agile practices encourage a flexible response to change which is crucial in a
dynamic business environment.

17.2 Scrum

Our preferred Agile framework is Scrum due to its simplicity and efficiency. We have
weekly Scrum meetings to enhance communication, collaboration, and product quality.

• Scrum Meetings: Scrum meetings, or ’sprints’, are held once a week. Each sprint
starts with a planning meeting, where tasks for the week are defined and assigned
to team members. During the sprint, team members work on the assigned tasks
and meet daily for a quick status update (Daily Scrum/Standup).

RD Research Software Engineering - Company Policy

23

• End of Week Cool Down: At the end of each week, we have a cool down period.
This is a time for the team to review the work completed during the week, to reflect
on what worked well and what improvements could be made for the next sprint.
It’s also a time for the team to unwind and recharge before the next sprint begins.

17.3 Integration with JIRA

We use JIRA “Jira Software: The #1 software development tool used by agile teams”,
n.d., a project management tool, to help manage our Agile workflow. This allows us to
easily create and assign tasks, track progress, and manage changes.

• Task Management: Tasks for each sprint are created as ’issues’ in JIRA. During
the sprint planning meeting, these issues are assigned to team members based on
their skills and availability.

• Progress Tracking: JIRA’s Agile boards provide a visual representation of the
progress of the sprint. Team members update the status of their tasks as they work
on them, giving everyone a real-time view of the sprint progress.

• Collaboration: JIRA facilitates communication and collaboration among team
members. Team members can comment on issues, attach files, and tag each other
for updates.

• Reporting: JIRA provides robust reporting tools that can help the team under-
stand their performance over time. These include velocity charts, burn-down charts,
and cumulative flow diagrams.

18 Recommended Practices/Guidelines for a Soft-

ware Engineering Company

Beyond the specific technical practices and guidelines covered in this document, there are
broader software engineering principles and methodologies that we at RD Research adhere
to. These guiding principles inform our approach to software development and contribute
to a productive, collaborative, and high-quality software engineering environment:

• Continuous Learning and Improvement: The field of software engineering is
ever-evolving. We encourage all team members to continuously learn and adapt to
new technologies, tools, and practices. Regular training and learning opportunities
should be provided to the team.

• Collaboration and Communication: Software development is a team effort.
Open and transparent communication fosters a culture of collaboration and mutual
respect, enhancing overall productivity and morale.

• Quality Assurance: Rigorous testing practices, including unit testing, integration
testing, and end-to-end testing, should be in place to ensure the reliability and
quality of our software.

RD Research Software Engineering - Company Policy

24

• User-Centric Design: All software should be developed with the end-user in
mind. We should strive to understand our users’ needs and design our software to
be intuitive and user-friendly.

• Sustainability and Maintainability: We strive to write clean, readable, and
well-documented code that can be easily maintained and updated over time. This
involves adhering to principles like DRY (Don’t Repeat Yourself) and KISS (Keep
It Simple, Stupid).

• Security: Security should be a top priority in all stages of software development.
We must adhere to best practices in secure coding, data handling, and configuration
management to protect our applications and users’ data.

• Performance: We aim to build software that is not just functional, but also
efficient. Regular performance profiling and optimization should be part of our
development process.

• Ethical Considerations: As software engineers, we have a responsibility to con-
sider the ethical implications of our work. We strive to build software that respects
user privacy, promotes inclusivity, and does not harm the environment.

By adhering to these principles, we strive to build a software engineering culture that

is focused on continuous improvement, collaboration, quality, and ethics Council, 2020.

19 Conclusion

This document serves as a comprehensive guide to the capabilities, practices, and
procedures we adhere to at RD Research. From code creation to agile methodologies,
local development to deployment, and database management to security, we have
outlined our approach across all aspects of the software development lifecycle.

Maintaining and following these guidelines will facilitate a consistent, efficient, and
high-quality approach to our work.

This document serves to guide existing team members and provides a reference for
onboarding new members, ensuring a unified understanding of our practices. It may
also be passed to clients so they can better understand how we work.

In a dynamic field like software and database development, it is important that a
structured approach is used. As such, this document should be updated and
augmented as necessary to stay in sync with emerging trends and best practices. Our
ultimate goal is to maintain a software engineering culture that fosters learning,
collaboration, quality, and innovation.

By adhering to these guidelines, we are confident in our ability to deliver outstanding
software solutions that meet and exceed our clients’ needs.

RD Research Software Engineering - Company Policy

25

References

Amazon Web Services, I. (2023). Aws best practices [Accessed: 2024-05-24].
Community, L. (2022). Laravel best practices [Accessed: 2024-05-24].

Contributors, M. (n.d.). Cross-origin resource sharing (cors) [Accessed: 2023-05-24].
Council, F. T. (2020). Best practices for a successful software engineering culture [Accessed: 2024-05-24].
Docker. (n.d.). Empowering app development for developers [Accessed: 2024-05-24].
Fowler, M., & Foemmel, M. (n.d.). Continuous integration [Accessed: 2024-05-24].
GitHub. (n.d.-a). Github: Where the world builds software [Accessed: 2024-05-24].
GitHub. (n.d.-b). Understanding the github flow [Accessed: 2024-05-24].
Javascript style guide [Accessed: 2023-05-22]. (n.d.).
Jenkins. (n.d.). Jenkins: Build great things at any scale [Accessed: 2024-05-24].
Jira software: The #1 software development tool used by agile teams [Accessed: 2023-05-22]. (n.d.).
Laravel. (2023). Laravel forge documentation [Accessed: 2024-05-24].

Laravel documentation [Accessed: 2023-05-22]. (n.d.).
Let’s encrypt [Accessed: 2023-05-24]. (n.d.).

Lindley, C. (2020). Front-end developer handbook [Accessed: 2024-05-24].
McConnell, S. (2004). Code complete: A practical handbook of software construction. Microsoft Press.
Mysql workbench manual [Accessed: 2023-05-22]. (n.d.).

Overflow, S. (n.d.). Best practices for writing code comments [Accessed: 2023-05-22].
Pep 8 – style guide for python code [Accessed: 2023-05-22]. (n.d.).

Psr-12: Extended coding style [Accessed: 2023-05-22]. (n.d.).
Software, S. (n.d.). Best practices for code review [Accessed: 2024-05-24].
Various. (n.d.). Local development best practices [Accessed: 2024-05-24].
What is infrastructure as code (iac)? [Accessed: 2024-05-24]. (n.d.).
Wiggins, A. (n.d.). The twelve-factor app: Iii. config [Accessed: 2023-05-24].

